Analysis of excitatory and inhibitory spontaneous synaptic activity in mouse retinal ganglion cells.

نویسندگان

  • N Tian
  • T N Hwang
  • D R Copenhagen
چکیده

Spontaneous inhibitory and excitatory postsynaptic currents (sIPSCs and sEPSCs) were identified and characterized with whole cell and perforated patch voltage-clamp recordings in adult mouse retinal ganglion cells. Pharmacological dissection revealed that all cells were driven by spontaneous synaptic inputs mediated by glutamate and gamma-aminobutyric acid-A (GABAA) receptors. One-half (7/14) of the cells also received glycinergic spontaneous synaptic inputs. Both GABAA and glycine receptor-mediated sIPSCs had rise times (10-90%) of < 1 ms. The decay times of the GABAA receptor-mediated sIPSCs were comparable with those of the glycine receptor-mediated sIPSCs. The average decay time constant for monoexponentially fitted sIPSCs was 63.2 +/- 74.1 ms (mean +/- SD, n = 3278). Glutamate receptor-mediated sEPSCs had an average rise time of 0.50 +/- 0.20 ms (n = 109) and an average monoexponential decay time constant of 5.9 +/- 8.6 ms (n = 2705). Slightly more than two-thirds of the spontaneous synaptic events were monoexponential (68% for sIPSCs and 76% for sEPSCs). The remainder of the events was biexponential. The amplitudes of the spontaneous synaptic events were not correlated with rise times, suggesting that the electrotonic filtering properties of the neurons and/or differences in the spatial location of synaptic inputs could not account for the difference between the decay time constants of the glutamate and GABAA/glycine receptor-mediated spontaneous synaptic events. The amplitudes of sEPSCs were similar to those recorded in tetrodotoxin (TTX), consistent with the events measured in control saline being the response to the release of a single quantum of transmitter. The range of the sIPSC amplitudes in control saline was wider than that recorded in TTX, consistent with some sIPSCs being evoked by presynaptic spikes having an average quantal size greater than one. The rates of sIPSCs and sEPSCs were determined under equivalent conditions by recording with perforated patch electrodes at potentials at which both types of event could be identified. Two groups of ganglion cell were observed; one group had an average sEPSCs/sIPSCs frequency ratio of 0.96 +/- 0.77 (n = 28) and another group had an average ratio of 6.63 +/- 0.82 (n = 7). These findings suggest that a subset of cells is driven much more strongly by excitatory synaptic inputs. We propose that this subset of cells could be OFF ganglion cells, consistent with the higher frequency of spontaneous action potentials found in OFF ganglion cells in other studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissociated retinal neurons form periodically active synaptic circuits.

Throughout the developing nervous system, immature circuits generate rhythmic activity patterns that influence the formation of adult networks. The cellular mechanisms underlying this spontaneous, correlated activity can be studied in dissociated neuronal cultures. Using calcium imaging and whole cell recording, we showed that cultured dissociated mammalian retinal neurons form networks that pr...

متن کامل

Membrane properties and monosynaptic retinal excitation of neurons in the turtle accessory optic system.

Using an eye-attached isolated brain stem preparation of a turtle, Pseudemys scripta elegans, in conjunction with whole cell patch techniques, we recorded intracellular activity of accessory optic system neurons in the basal optic nucleus (BON). This technique offered long-lasting stable recordings of individual synaptic events. In the reduced preparation (most of the dorsal structures were rem...

متن کامل

Excitatory and inhibitory contributions to receptive fields of alpha-like retinal ganglion cells in mouse.

The ON and OFF pathways that emerge at the first synapse in the retina are generally thought to be streamed in parallel to higher visual areas, but recent work shows cross talk at the level of retinal ganglion cells. The ON pathway drives inhibitory inputs onto some OFF ganglion cells, such that these neurons show "push-pull" convergence of OFF-excitation and ON-disinhibition. In this study we ...

متن کامل

Differential effects of charybdotoxin on the activity of retinal ganglion cells in the dark- and light-adapted mouse retina

Patch-clamp recordings were made from retinal ganglion cells in the mouse retina. Under dark adaptation, blockage of BK(Ca) channels increases the spontaneous excitatory postsynaptic currents (EPSCs) and light-evoked On-EPSCs, while it decreases the light-evoked Off inhibitory postsynaptic currents (IPSCs). However, under light adaptation it decreases the light-evoked On-EPSCs, the spontaneous ...

متن کامل

Loss of Photoreceptors Results in Upregulation of Synaptic Proteins in Bipolar Cells and Amacrine Cells

Deafferentation is known to cause significant changes in the postsynaptic neurons in the central nervous system. Loss of photoreceptors, for instance, results in remarkable morphological and physiological changes in bipolar cells and horizontal cells. Retinal ganglion cells (RGCs), which send visual information to the brain, are relatively preserved, but show aberrant firing patterns, including...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 80 3  شماره 

صفحات  -

تاریخ انتشار 1998